

Center for Brain-Inspired Computing

U: Kaushik Roy (Director), Eugenio Culurciello, Suresh Jagannathan, Anand Raghunathan eorgia Tech.: Arijit Raychowdhury, Justin Romberg M/T: James DiCarlo, Tomaso Poggio State U.: Dan Hammerstrom, Christof Teuscher Princeton U.: Sanjeev Arora

a State U.: Yu Cho, Jae-sun Seo Penn State U.: Vijaykrishnan Narayanan, John Sustersic U. Penn: Vijay Kumar, Daniel Lee

MOTIVATION AND CHALLENGES

- Current applications of Al / machine learning are only the tip of the iceberg
- o Few large "killer apps"
- > Tremendous potential for economic and societal impact if AI can be applied to a much broader range of applications

Current CHALLENGES Intelligent Systems Radical growth in compute workload Perceptionunsustainable centric (Search. Conventional hardware (Boolean & speech & image von Neumann) not good match recognition. Safety-critical applications demand NLP) much higher robustness

Centralized cloud-based intelligence may not scale

Future Autonomous Intelligent

Perception Reasoning

Decision Making

C-BRIC VISION

- > Enable next generation of intelligent autonomous
- o Narrow the orders-of-magnitude computing efficiency gap between current computing systems and the brain
- o Drive improvements in the robustness of cognitive computing systems
- Explore distributed intelligence across edge/hub/cloud and peer-to-peer
- o Demonstrate the impact of these advances in end-to-end systems such as autonomous drones and personal robotics

computing capabilities & quantum improvement in intelligent autonomou systems

euromorphic architectures & in-memory computing fabric Theme 3: Distributed Intelligence

Theme 1: Neuro-inspired Algorithms & Theory

Distributed learning & inference (edge-hub-cloud & Context-aware distributed cognition

THEME 1: NEURO-INSPIRED ALGORITHMS AND THEORY

CMOS

- · Largely supervised learning
- · Static (one-time) learning · Training requires global updates (Backpropagation /
- · Perception (speech, images,
- · Unknown generalization
- · Manually designed network

Future Neuro-Inspired Algorithms

- Computationally efficient

Future Distributed Intelligence

Theoretical Understanding of Learning

- > Shrinking of the EigenValue spectral circle represents the stabilizing effect of the learning mechanism
- > Understanding network behavior from Random Matrix theory and Principal Component Analysis
- > Quantification of stabilizing hyperparameters from network activity

THEME 2: NEUROMORPHIC FABRICS

- CMOS and Post-CMOS neuro-mimetic devices and interconnects
- Compute-near-memory / Compute-in-memory
- Approximate and stochastic neuronal and synaptic hardware
- Architectures that embody computing principles from the brain (sparse irregular, event-driven, massively parallel)
- Programming and evaluation frameworks

Hardware Demonstration of Autonomous Decision Making via Reinforcement Learning

THEME 3: DISTRIBUTED INTELLIGENCE

- Centralized training in cloud Inference entirely in cloud or entirely on edge device
- Algorithms agnostic to distributed context require high communication

Peer-to-peer

Distributed Conditional Learning/Inference

APPLICATION DRIVERS

> Autonomous drones and drone swarms

- Personal robotic assistants
- > Technologies from Themes 1-3 enable new capabilities with real-time, autonomous operation

C-BRIC UNIVERSITIES

This work was supported in part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA

THE ELECTRONICS RESURGENCE INITIATIVE

